Data Drift в ML Страхового Дома ВСК: от PSI-анализа до пересборки фичей и сравнения моделей. Представьте: ваша модель машинного обучения, блестяще прошедшая все A/B-тесты, через полгода начинает тихо, но уверенно деградировать. Предсказания становятся менее точными, бизнес-метрики ползут вниз, а вы не понимаете, почему. Знакомо? Скорее всего, вы столкнулись с Data Drift — смещением данных. Data Drift — это изменение распределения входных данных модели с течением времени. Мир не статичен: меняются привычки клиентов, экономическая ситуация, законодательство. Модель, обученная на «старых» ...